ارزیابی کارایی مدل تلفیقی شبکه عصبی مصنوعی و آنالیز موجک در پیش بینی غلظت شاخص کیفی اکسیژن محلول در مخزن سد بولدر

Authors

طاهر رجایی

استادیار گروه مهندسی عمران/ دانشگاه قم امیر برومند

دانشجوی دکتری/ دانشگاه قم

abstract

مدیریت کمی و کیفی منابع آب به منظور تامین تقاضا برای کاربری های مختلف از رویکردهای مهم سیاست گذاری در هر کشور است. در این راستا پایش کیفیت آب مخازن سدها به عنوان یک گام اساسی در مدیریت این منابع با ارزش اهمیت ویژه ای دارد. دراین تحقیق مدل های شبکه عصبی مصنوعی، رگرسیون خطی چند متغیره و مدل تلفیقی شبکه عصبی مصنوعی با تبدیل موجک بمنظور پیش بینی غلظت اکسیژن محلول در مخزن سد بولدر واقع در ایالت کلرادو آمریکا بکار گرفته شده است. در مدل تلفیقی، سری زمانی داده های اندازه گیری شده شاخص کیفی اکسیژن محلول با استفاده از تبدیل موجک در سطوح مختلف تجزیه شد و زیرسری های موثر در غلظت اکسیژن محلول در یک ماه آینده به عنوان ورودی های شبکه عصبی بکار گرفته شد. نتایج نشان داد که مدل تلفیقی نتایج دقیق تری را نسبت به مدل های عصبی و رگرسیونی بدست می دهد و استفاده از تبدیل موجک به مقدار قابل توجهی دقت نتایج حاصل از مدلسازی را بهبود می بخشد. مقادیر e و rmse داده های آزمایشی برای این مدل به ترتیب 96/0 و 22/0 حاصل شده است. همچنین نتایج نشان داد که مدل های تلفیقی و عصبی نقاط مینیمم را که شرایط بی هوازی را در مخزن ایجاد می کند، به خوبی پیش بینی می کند ولی مدل رگرسیونی عملکرد خوبی در پیش بینی شرایط بی هوازی ندارد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

ارزیابی کارایی مدل تلفیقی شبکه عصبی مصنوعی و آنالیز موجک در پیش‌بینی غلظت شاخص کیفی اکسیژن محلول در مخزن سد بولدر

مدیریت کمی و کیفی منابع آب به منظور تامین تقاضا برای کاربری‌های مختلف از رویکردهای مهم سیاست‌گذاری در هر کشور است. در این راستا پایش کیفیت آب مخازن سدها به عنوان یک گام اساسی در مدیریت این منابع با ارزش اهمیت ویژه‌ای دارد. دراین تحقیق مدل‌های شبکه عصبی مصنوعی، رگرسیون خطی چند متغیره و مدل تلفیقی شبکه عصبی مصنوعی با تبدیل موجک بمنظور پیش‌بینی غلظت اکسیژن محلول در مخزن سد بولدر واقع در ایالت کلرا...

full text

پیش بینی خشکسالی با استفاده از مدل تلفیقی شبکه عصبی مصنوعی- موجک و مدل سری زمانیARIMA

تبدیل موجک یکی از روش­های نوین و بسیار موثر در زمینه تحلیل سیگنال­ها و سری­های زمانی است. در این روش سیگنال شاخص بارش استاندارد (SPI) با استفاده از موجک مادر منتخب تجزیه شده، داده­های حاصل به­عنوان ورودی مدل شبکه عصبی مصنوعی در نظر گرفته شده و یک مدل تلفیقی برای پیش­بینی خشکسالی ارائه می­گردد. در این تحقیق، از شبکه­های عصبی مصنوعی پرسپترون چند لایه (MLP) و تابع پایه‌ای شعاعی ((RBF، سری زمانی AR...

full text

ارزیابی کارایی شبکه عصبی مصنوعی در پیش بینی شاخص های کیفی ( DO و BOD ) آب رودخانۀ دره مرادبیک همدان

یکی از عوامل مهم توسعه در هر منطقه فراهم بودن منابع آب مناسب میباشد. در این راستا علاوه بر کمیت، توجه به وضع کیفی آن نیز از اهمیت شایانی برخوردار است. هدف از این تحقیق کاربرد مدل شبکۀ عصبی پرسپترون چند لایه در مدلسازی شاخصهای کیفی آب رودخانهها است. در این مطالعه از اطلاعات و دادههای شامل 10 متغیر کیفی ماهانۀ آب رودخانۀ دره مراد بیک همدان در طول یک سال و در شش ایستگاه برای مدلسازی اکسیژن مورد نی...

full text

مقایسه قدرت مدل های شبکه عصبی مصنوعی و شبکه عصبی پویا در پیش بینی نرخ ارز: کاربردی از تبدیل موجک

این مطالعه تلاشی است در جهت به­کارگیری ترکیب مدل شبکه­ی عصبی پویا و تجزیه­ی موجک جهت میسر نمودن امکان انتخاب یک الگوی بهینه جهت پیش­بینی متغیر مذکور می­باشد. جهت تحقق این مهم، از داده­های سری­زمانی ماهانه­ی نرخ ارز طی بازه­ی زمانی فروردین 1377 الی آذر 1391، که مشتمل بر 177 مشاهده بوده که از این بین، تعداد 150 مشاهده جهت مدل­سازی­ها استفاده شده و تعداد 27 مشاهده نیز جهت شبیه­سازی و یا به بیان دی...

full text

ارزیابی عملکرد شبکه عصبی مصنوعی در پیش‎بینی اکسیژن محلول و فسفر کل در حوضه آبریز سد ایلام

در این تحقیق از مدل شبکه عصبی پرسپترون چند لایه(MLP-NN) برای شبیه‎سازی اکسیژن محلول و فسفر کل در حوضه آبریز سد ایلام استفاده شد. مدل شبکه عصبی با استفاده از داده‎های آزمایشگاهی سه زیرحوضه سد ایلام در سال‎های 89-1388 طراحی گردید. متغیرهای ورودی شبکه عصبی برای مدل‎سازی اکسیژن محلول شامل اسیدیته آب، هدایت الکتریکی، کل جامدات معلق، دما، فسفر کل، سولفات، آمونیوم، آهن و نیتروژن کل بودند. متغیرهای ورو...

full text

مقایسه مدلهای خودهمبسته شبکه عصبی مصنوعی دینامیک و استاتیک در پیش بینی جریان ماهانه ورودی به مخزن سد دز

در مقاله حاضر قابلیت مدل خود همبسته شبکه عصبی مصنوعی دینامیک برای پیش­بینی جریان ماهانه ورودی مخزن سد دز ارزیابی شده و نتایج  به دست آمده با مدل خودهمبسته شبکه عصبی مصنوعی استاتیک مقایسه شده است. در تحقیقات قبل مقایسه مدل‌های استاتیک و دینامیک در شبکه‌های عصبی مصنوعی صورت نگرفته است. ضمناً تحقیق حاضر از حیث خودهمبستگی مدل شبکه عصبی مصنوعی، دارای نوآوری می‌باشد. در این تحقیق آبدهی های ماهانه بین ...

full text

My Resources

Save resource for easier access later


Journal title:
پژوهش های حفاظت آب و خاک

جلد ۲۲، شماره ۶، صفحات ۱۵۳-۱۶۹

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023